620

Hiroshi Nishino,* Nobuyuki Itoh, Makiko Nagashima, and Kazu Kurosawa Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami 2-39-1, Kumamoto 860 (Received September 18, 1991)

Synopsis. 2,6-Disubstituted phenols are oxidized with tris(2,4-pentanedionato)manganese(III), [Mn(acac)₃], in glacial acetic acid to give the corresponding 4,4'-biphenyldiols in high yields, whereas similar reactions using manganese(III) acetate, [Mn(OAc)₃], instead of [Mn(acac)₃] quantitatively yield the corresponding 4,4'-diphenoquinones. Cross-coupling reactions of 2,6-di-t-butylphenol and other substituted phenols afford the corresponding cross-coupled 4,4'-biphenyldiols and 4,4'-diphenoquinones together with oxidation products derived from the starting phenols themselves. The advantageous use of [Mn(acac)₃] and [Mn(OAc)₃] in the ubiqitous phenol coupling reaction is discussed.

There is a significant number of reports concerning the oxidation of phenols with molecular oxygen catalyzed by metals, metal salts or metal complexes, and peroxides1) in the study of charge-transfer complexes2) and polymer science.3) It is generally known that oxidation of phenols gives benzoquinones, biphenyldiols. diphenoquinones, and/or poly(phenylene ethers). primary product must be a phenoxyl radical and thus the phenoxyl radicals obtained from the reactions of 2'-hydroxychalcones with manganese(III) acetate, [Mn(OAc)₃], eventually add to the olefinic double bond to yield the corresponding aurones.4) Although some coupling reactions involving simple phenols such as 2,6di-t-butyl- or 2,6-dimethylphenol using tris(2,4-pentanedionato)manganese(III), [Mn(acac)₃], or [Mn(OAc)₃] in carbon disulfide or acetonitrile have been reported.⁵⁾ there are few reports for the reactions using manganese(III) complexes in glacial acetic acid as a solvent. We applied the oxidation of some simple phenols with [Mn(acac)₃] in glacial acetic acid to obtain the corresponding 4,4'-biphenyldiols in high yields. On the other hand, similar oxidations with [Mn(OAc)3] in glacial acetic acid quantitatively gave the corresponding 4,4'diphenoquinones. In order to prepare 4,4'-biphenyldiols and 4,4'-diphenoquiones having different substituents, we also examined the cross-coupling reactions between 2,6-di-t-butylphenol and other substituted phenols under similar reaction conditions. In this note, we report the results of our study in detail.

Results and Discussion

Oxidation of Simple Phenols. When 2,6-di-t-butylphenol (1a) was oxidized with [Mn(acac)₃] in glacial acetic acid at room temperature, we were surprised that the yield of the corresponding 4,4'-biphenyldiol (2a; 93%) was significantly improved, although 2a (71%) has been obtained by a similar reaction in carbon disulfide at reflux temperature.^{5d)} The oxidations of 2,6-diisopropyl- (1b), 2,6-dimethyl- (1c), 2,6-dimethoxy- (1d), and 2,3,6-trimethylphenol (1c) were conducted under similar reaction conditions and the corresponding 4,4'-biphenyldiols (2b—e) were obtained in good yields.

The oxidation of 1a—d using [Mn(OAc)₃] instead of [Mn(acac)₃] did not stop at the stage of biphenyldiols, but did produce the corresponding 4,4'-diphenoquiones (3a-d). While 1e or 2,3,5,6-tetramethylphenol (1f) was oxidized with [Mn(OAc)₃] to predominantly yield the corresponding 4,4'-biphenyldiol (2e or 2f), no diphenoquinones were formed. Although the biphenyldiols (2e and 2f) were subjected to further oxidation with [Mn(OAc)₃], the reaction failed probably because of the steric hindrance of the methyl groups at the C-3, 3', 5, 5' positions. The reaction of 2,6-dichlorophenol (1g) with [Mn(acac)₃] and [Mn(OAc)₃] gave a polymeric product (Found: C, 48.11; H, 1.90%) and any biphenyldiols and diphenoquinones were not isolated at all. The oxidation of 1a with hexakis(dimethyl sulfoxide)manganese(III) perchlorate, [Mn(dmso)₆](ClO₄)₃,⁶⁾ in glacial acetic acid for 1 min yielded 2a and 3a in moderate yields. The same reaction was run in dichloromethane since [Mn(dmso)₆](ClO₄)₃ is soluble in dichloromethane. However, only half of 1a was consumed even after 9 h and only 3a was obtained. results are summarized in Scheme 1 and Table 1.

The formation of 4-diacetylmethylene-2,5-cyclohexadien-1-ones (6a,b,d) deserves comments. It is known that [Mn(acac)₃] readily decomposes in acetic acid to produce diacetylmethyl radicals, ·CH₂(COCH₃)₂, which are trapped by radical-trapping reagents such as xanthenes or 2,6-di-t-buryl-4-methylphenol.⁷⁾ Therefore, it is considered that the diacetylmethyl radicals attack the phenoxyl radicals formed by the electron transfer

$$O \longrightarrow R^{2} R^{3} \qquad R^{2} R^{3} R^{3} R^{2} \qquad OH \xrightarrow{AcOH} O \longrightarrow R^{2} \qquad R^{2}$$

$$1 \text{ a : } R^{1} = R^{2} = t \text{-Bu, } R^{3} = R^{4} = H \qquad e : R^{1} = R^{2} = R^{3} = Me, R^{4} = H \qquad f : R^{1} = R^{2} = R^{3} = Me \qquad g : R^{1} = R^{2} = R^{3} = R^{4} = H \qquad g : R^{1} = R^{2} = R^{3} = R^{4} = H \qquad g : R^{1} = R^{2} = Cl, R^{3} = R^{4} = H \qquad g : R^{1} = R^{2} = Cl, R^{3} = R^{4} = H \qquad g : R^{1} = R^{2} = Cl, R^{3} = R^{4} = H \qquad G : R^{1} = R^{1} = Cl, R^{1} = Cl$$

Scheme 1.

Table 1. Oxidation of Substituted Phenols (1a-g) with Mn(III) Complexes in AcOH

C	DI 1	Manganese(III) complex [Mn(acac) ₃]	N f = 1 =	Temperature	Time min 40	Conversion	D J (-:-1J (07)b)	
Entry	Phenol		Molar	°C			Product (yield/%) ^{b)}	
1	1a		1:1	R.t.		100	2a ¹⁰⁾ (93)	
2		. , , ,	1:4	Reflux	1	100	3a ¹⁰⁾ (63) 6a (15)	
3		$[Mn(OAc)_3]$	1:2	100	5	100	3a (98)	
4		$[Mn(dmso)_6](ClO_4)_3$	1:2	Reflux	1	90	2a (44) 3a (35)	
5	1b	[Mn(acac) ₃]	1:1	R.t.	1	95	$2b^{10)}$ (65) $3b^{10)}$ (18)	
6		. , , ,	1:4	Reflux	1	100	3 (68) 6b (8)	
7		[Mn(OAc) ₃]	1:3	100	5	100	2b (1) 3b (95) 4b ¹⁰⁾ (1)	
8	1c	[Mn(acac) ₃]	1:1	R.t.	1	83	$2c^{9)}(32) 3c^{9)}(16)$	
9		. , , ,	1:4	Reflux	1	100	3c (78)	
10		$[Mn(OAc)_3]$	$1:2^{c}$	100	20	97	3c (84)4c (6) 5c ⁹⁾ (2)	
11	1d	[Mn(acac) ₃]	1:2	Reflux	1	94	$2d^{11}$ (80) $3d^{12}$ (3) $5d^{12}$ (11)	
12		. , , ,	1:4	Reflux	1	100	2d (65) 5d (26) 6d (4)	
13		$[Mn(OAc)_3]$	1:4	100	10	100	3d (79) 5d (9)	
14	1e	[Mn(acac) ₃]	1:4	Reflux	3	100	$2e^{13}$ (63) $5e^{12}$ (15)	
15		[Mn(OAc) ₃]	1:2	100	5	100	2e (52) 4e ¹⁴⁾ (5) 5e (17) 7e (7)	
16	1f	[Mn(OAc) ₃]	1:2	100	10	100	2f ¹³⁾ (36) 4f ¹⁵⁾ (9) 5f ¹²⁾ (21) 7f (14)	

a) Phenol (1 mmol): Mn(III) complex. b) The yields based on the amounts of phenols added. c) NH₄Cl (10 mmol).

from phenols to [Mn(acac)₃], giving 6a,b,d.

We also examined the oxidative coupling reaction of p-substituted phenols such as p-cresol, p-chlorophenol, p-t-butylphenol, and 2,4,6-tribromophenol using [Mn- $(OAc)_3$]. However, most of the oxidations gave polymeric products and other coupling products were not isolated except for Pummerer's ketone⁸⁾ (1%) from p-cresol and 2,6-bis(4-chlorophenoxy)-1,4-benzoquinone (5h; 5%) from p-chlorophenol.

Cross-Coupling Reactions. In order to synthesize unsymmetrical 4,4'-biphenyldiols and 4,4'-diphenoquinones, cross-coupling reactions of 1a, which were selected because of their easy separation by TLC, and other substituted phenols (1c—g) were carried out under similar reaction conditions (Scheme 2). The reactions actually afforded cross-coupled 4,4'-biphenyldiols (2ac, 2ad, 2af) and 4,4'-diphenoquinones (3ac, 3ad, 3ag) except for the cases of 1a and 1e. However, oxidation products of the starting phenols themselves were also obtained at the same time. The yields and the reaction conditions are summarized in Table 2.

In closing, we demonstrated that the proper use of [Mn(acac)₃] and [Mn(OAc)₃] in glacial acetic acid was

$$1a + HO \xrightarrow{R^{1}} R^{4} \xrightarrow{Mn(III)} HO \xrightarrow{R^{2}} R^{3} R^{2} OH$$

$$1c-g \qquad 2ac,ad,af$$

$$1c-g \qquad 2ac,ad,af$$

$$ac: R^{1}=R^{2}=Me, R^{3}=R^{4}=H$$

$$ad: R^{1}=R^{2}=OHe, R^{3}=R^{4}=H$$

$$af: R^{1}=R^{2}=R^{3}=R^{4}=H$$

$$3ac,ad,ag \qquad ag: R^{1}=R^{2}=Cl, R^{3}=R^{4}=H$$

$$Scheme 2.$$

advantageous for the ubiquitous phenol coupling reactions in the laboratory. The formation of phenoxyl radicals and the subsequent para-para coupling of the phenoxyl radicals are generally accepted. However, the product distribution depends on the used oxidants.⁹⁾ In the present reactions, the electron donor-aceptor complex of Mn(III) with phenols and the corresponding phenoxyl radicals might be formed at the first stage and

Table 2. Cross-Coupling Reaction of 2,6-Di-t-butylphenol (1a) and Substituted Phenols (1c—g) with Mn(III) Complexes in AcOH at 100 °C

Enter Dhonal	Manganese(III) complex	Molar	Time	Conversion		Dog 1004 (civil 07)b)
Entry Phenol			min	1a	1c—g	Product (yield %) ^{b)}
24 ^{c)} 1a, c	[Mn(acac) ₃]	1:1:4	1	96	100	2ac (7) 3ac (12) 2c (11) 3a (28) 4c (4) 5c (8) 6a (5)
25	$[Mn(OAc)_3]$	$1:1:8^{d}$	30	100	100	3ac (26) 3a (25) 3c (14) 5a ¹²⁾ (10) 5c (8)
26 ^{c)} 1a, 1d	[Mn(acac) ₃]	1:1:8	1	100	100	2ad (14) 3ad ¹⁶⁾ (10) 3a (21) 5d (39) 6a (9)
27	$[Mn(OAc)_3]$	1:1:8	10	100	100	3ad (11) 2d (3) 3a (41) 3d (11) 5a (2) 5d (33)
28 1a, 1e	[Mn(OAc) ₃]	$1:1:4^{e}$	10	96	100	2a (7) 3a (30) 4a (3) 5a (4) 2e (19) 4e (9) 5e (10)
29 1a, 1f	[Mn(OAc) ₃]	1:1:4	10	97	97	2af (10) 2a (3) 3a (15) 4a (1) 5a (20) 2f (13) 4f (24) 5f (4)
30 1a, 1g	$[Mn(OAc)_3]$	$1:1:4^{f}$	10	100	100	3ag (14) 3a (33) 4a (4) 5a (9)

a) 1a (1 mmol): Substituted phenol (1 mmol): Manganese(III) complex. b) The yields based on the amounts of phenols added. c) The reaction at the reflux temperature. d) Acetic anhydride (50 mmol) was added. e) 2-Acetoxymethyl-5,6-dimethyl-1,4-benzoquinone (5i; 7%) was formed along with 3a (10%), 5a (40%), and 5e (29%), when the reaction was run at the molar ratio of 1:1:8 for 20 min. f) Ammonium chloride (10 mmol) was added.

might affect the product distribution.

Experimental

Oxidation of Simple Phenols. A typical procedure for the oxidation of phenols with [Mn(acac)₃] or [Mn(OAc)₃] was as follows. A mixture of a phenol (1 mmol) and [Mn(acac)3] (1-4 mmol) was stirred at room temperature in glacial acetic acid (30 cm³) or [Mn(acac)₃] was added to a heated solution of a phenol in glacial acetic acid. The reactions proceeded until the solutions turned transparent. The solvent was removed in vacuo, and the residue was triturated with 2 M (1 M=1 mol dm⁻³) hydrochloric acid (30 cm³) and then extracted with chloroform. The products were separated by TLC (Wakogel B-10) using chloroform as the developing solvent. While in the [Mn(OAc)₃] oxidation, a phenol (1 mmol) and [Mn(OAc)₃] (1—4 mmol) were added to glacial acetic acid (20 cm³) and then the mixture was heated at 100 °C. After the solution turned colorless, hot water (50 cm³) was added. aqueous solution was extracted with chloroform three times. When a 4,4'-diphenoquinone crystallized after adding hot water, the 4,4'-diphenoquione was filtered using a glass filter and then the filtrate was extracted with chloroform. The products were separated by TLC.

Oxidation Products. 6a: Mp 86—87 °C; IR (CHCl₃) 1680, 1630; 1 H NMR δ=1.10 (18H, s), 2.43 (6H, s), 7.10 (2H, s). Anal. ($C_{19}H_{26}O_{3}$) C, H.

4c: Mp 96.04—96.5 °C; IR (CHCl₃) 3590, 3460, 1755; 1 H NMR δ =2.19 (6H, s), 2.21 (3H, s), 4.49 (1H, s), 6.55 (2H, s). Found: m/z 180.07575. Calcd for $C_{10}H_{12}O_{3}$: M, 180.07864.

7e: This product was presumed to be a mixture of three isomers, 6-acetoxy-4-(4-hydroxy-2,3,5-trimethylphenyl)-2,5,6-trimethyl-2,4-cyclohexadien-1-one, 6-acetoxy-4-(4-hydroxy-2,3,5-trimethylphenyl)-2,3,6-trimethyl-2,4-cyclohexadien-1-one, and 4-acetoxy-4-(4-hydroxy-2,3,5-trimethylphenyl)-2,3,6-trimethyl-2,5-cyclohexadien-1-one, based on the analysis of the 13 C NMR spectrum. Mp 177.5—179.5 °C; IR (CHCl₃) 3580, 3400, 1745, 1680; 1 H NMR δ=1.49 (s), 1.57 (s), 1.93 (s), 2.05 (m), 2.12 (s), 2.18 (s), 5.05 (s), 6.68 (s); 13 C NMR δ=200.16, 199.97, 198.01, 169.45, 151.61, 151.43, 148.81, 144.42, 144.18, 143.45, 138.64, 136.50, 136.02, 132.82, 131.27, 130.17, 129.99, 128.28, 127.37, 122.62, 122.49, 120.61, 82.23, 82.05, 78.09, 24.18, 20.47, 18.46, 16.67, 16.39, 15.96, 15.77, 14.98, 14.50, 14.38, 12.18, 11.51. Found: m/z 328.16618. Calcd for C_{20} H₂₄O₄: M, 328.16746.

7f: Mp 228—229 °C; IR (CHCl₃) 3570, 3400, 1740, 1665; 1 H NMR δ =1.39 (3H, s), 1.47 (3H, s), 1.58 (3H, s), 1.99 (9H, s), 2.13 (3H, s), 2.21 (6H, s), 4.71 (1H, s); 13 C NMR δ =198.88, 169.34, 150.88, 150.03, 143.20, 133.16, 131.87, 130.23, 128.28, 127.87, 119.51, 119.27, 81.38, 24.12, 20.59, 18.40, 16.44, 16.20, 14.13, 12.30, 11.57. Found: m/z 356.19816. Calcd for $C_{22}H_{28}O_4$: M, 356.19876.

2ac: Mp 198.5—200 °C; IR (CHCl₃) 3620, 3590; ¹H NMR δ =1.47 (18H, s), 2.26 (6H, s), 4.54 (1H, s), 5.16 (1H, s), 7.09 (2H, s), 7.27 (2H, s). Found: m/z 326.22474. Calcd for $C_{22}H_{30}O_2$: M, 326.22458.

3ac: Mp 176—177 °C; IR (CHCl₃) 1635, 1595; ¹H NMR δ =1.37 (18H, s), 2.16 (6H, s), 7.68 (2H, s), 7.70 (2H, s). Anal. (C₂₂H₂₈O₂) C, H.

4a: Mp 89.5—90.5 °C; IR (CHCl₃) 3620, 1760; ¹H NMR δ =1.42 (18H, s), 2.22 (3H, s), 5.05 (1H, s), 6.83 (2H, s). Anal. (C₁₆H₂₄O₃) C, H.

2ad: Mp 201.0—201.5 °C; IR (CHCl₃) 3615, 3525; ¹H NMR δ=1.47 (18H, s), 3.90 (6H, s), 5.21 (1H, s), 5.52 (1H, s), 6.72 (2H, s), 7.29 (2H, s). Anal. (C₂₂H₃₀O₄) C, H.

2af: Mp 199—200 °C; IR (CHCl₃) 3620, 3590; ¹H NMR δ =1.46 (18H, s), 1.95 (6H, s), 2.21 (6H, s), 4.72 (1H, s), 5.11 (1H, s), 6.87 (2H, s). Found: m/z 354.26410. Calcd for $C_{24}H_{34}O_2$: M, 354.25588.

3ag: Mp 203—205 °C; IR (CHCl₃) 1645, 1630, 1615; 1 H NMR δ =1.35 (18H, s), 7.53 (2H, s), 8.04 (2H, s). Found: m/z 364.09991. Calcd for C_{20} H₂₂O₂²⁵Cl₂: M, 364.09969.

5i (**R**¹=**CH**₂**OAc**, **R**²=**R**³=**Me**, **R**⁴=**H**): Mp 56.5—57.5 °C; IR (CHCl₃) 1745, 1645, 1615; ¹H NMR δ=2.02 (6H, s), 2.13 (3H, s), 4.92 (2H, d, J=1.6 Hz), 6.65 (1H, t, J=1.6 Hz). Found: m/z 208.07205. Calcd for C₁₁H₁₂O₄: M, 208.07356.

References

- 1) a) W. I. Taylor and A. R. Battersby, "Oxidative Coupling of Phenols," Dekker, New York (1967). b) P. D. McDonald and G. A. Hamilton, "Mechanisms of Phenolic Oxidative Coupling Reactions," in "Oxidation in Organic Chemistry," ed by W. S. Trahanovsky, Academic Press, New York (1973), Vol. 5-B, Chap. 2, pp. 97—134. c) R. A. Sheldon and J. K. Kochi, "Metal-Catalyzed Oxidations of Organic Compounds," Academic Press, New York (1981).
- 2) R. Foster, "Organic Charge-Transfer Complexes," Academic Press, London (1969).
- 3) a) M. G. Dobb and J. E. McIntyre, "Properties and Applications of Liquid-Crystalline Main-Chain Polymers," in "Liquid Crystal Polymers II/III," ed by M. Gordon and N. A. Platé, Springer-Verlag, Berlin (1984), pp. 61—98. b) R. W. Lenz, "Synthetic Routes to Liquid Crystalline Polymers," in "Recent Advances in Liquid Crystalline Polymers," ed by L. L. Chapoy, Elsevier, London (1985), pp. 3—13. c) G. Huynh-Ba and E. F. Cluff, "Structure and Properties of Rigid and Semirigid Liquid Crystalline Polymers," in "Polymeric Liquid Crystals," ed by A. Blumstein, Plenum Pressm New York (1985), pp. 217—238.
 - 4) K. Kurosawa, Bull. Chem. Soc. Jpn., 42, 1456 (1969).
- 5) a) R. van Helden and E. C. Kooyman, Recl. Trav. Chim. Pays-Bas, 80, 57 (1961). b) T. Shono, K. Yamanoi, T. Matsushita, and K. Shinra, Kogyo Kagaku Zasshi, 70, 2062 (1967). c) H. Finkbeiner and A. T. Toothaker, J. Org. Chem., 33, 4347 (1968). d) M. J. S. Dewar and T. Nakaya, J. Am. Chem. Soc., 90, 7134 (1968).
- 6) C. P. Prabhakaran and C. C. Patel, J. Inorg. Nucl. Chem., 30, 867 (1968).
- 7) H. Nishino, Bull. Chem. Soc. Jpn., 59, 1733 (1986).
- 8) a) R. Pummerer, D. Melamed, and H. Puttfarcken, *Ber.*, 55, 3116 (1922). b) K. Bowden and C. H. Reece, *J. Chem. Soc.*, **1950**, 2249.
- 9) R. G. R. Bacon and A. R. Izzat, J. Chem. Soc. C, 1966, 791.
- 10) V. Balogh, M. Feizon, and M. Golfer, *J. Org. Chem.*, **36**, 1339 (1971).
- 11) C. Liebermann, Justus Liebigs Ann. Chem., 169, 226 (1873).
- 12) A. MacKillop and S. J. Ray, Synthesis, 1977, 847.
- 13) C. R. H. I. de Jonge, H. M. van Dort, and L. Vollvracht, *Tetrahedron Lett.*, **1970**, 1881.
- 14) J. Weichet, L. Blaha, and B. Kakac, *Collect. Czech. Chem. Commun.*, **31**, 4598 (1966); *Chem. Abstr.*, **66**, 18647p (1967).
- 15) T. Wieland and H. Aquila, Angew. Chem., Int. Ed. Engl., 7, 213 (1966).
- 16) P. Boldt, W. Michaelis, H. Lackner, and B. Webs, Chem. Ber., 104, 220 (1971).